
PyLumerical Cheat Sheet
Version: main

Install with virtual environment
python -m venv .venv
.venv\Scripts\Activate.ps1 # Windows PowerShell.

For Linux, run source .venv/bin/activate
python -m pip install -U pip
python -m pip install ansys-lumerical-core

Starting a session
Start a Lumerical FDTD session

import ansys.lumerical.core as lumapi
with lumapi.FDTD() as fdtd:

print(f"This is Lumerical FDTD {fdtd.version()}")
input("Press any key to close session")

Start Lumerical Multiphysics, add CHARGE and HEAT solvers

import ansys.lumerical.core as lumapi
with lumapi.DEVICE() as device:

device.addchargesolver()
device.addheatsolver()

Start a Lumerical INTERCONNECT session, and print library

import ansys.lumerical.core as lumapi
with lumapi.INTERCONNECT() as intc:

print(intc.library())

The hide flag hides the GUI during execution

import ansys.lumerical.core as lumapi
with lumapi.FDTD(hide=True) as fdtd:

print(f"This is Lumerical FDTD {fdtd.version()}")

Run existing scripts on an existing Lumerical FDTD project

with lumapi.FDTD(hide=True,
script="SetupScript.lsf",
project="MyPyLumProject.fsp") as fdtd:

Use function from SetupScript.lsf
fdtd.customsetupfunction()
Do analysis after running simulation
analysisScript =

open("AnalysisScript.lsf","r").read()
fdtd.eval(analysisScript)

Set up simulation objects
Using keyword arguments

with lumapi.FDTD() as fdtd:
fdtd.addfdtd(dimension="2D", x=0.0e-9, y=0.0e-9,

x_span=3.0e-6, y_span=1.0e-6)

Using set commands

with lumapi.FDTD() as fdtd:
fdtd.addrect({"name": "MyRect"})
fdtd.setnamed("MyRect","x", 0)
fdtd.setnamed("MyRect","x span", 1e-6)

Using OrderedDict to preserve property assignment order

from collections import OrderedDict
with lumapi.FDTD() as fdtd:
props = OrderedDict([("name",

"power"),("override global monitor
settings", True),("x", 0.),("y", 0.4e-6),
("monitor type", "linear x"),("frequency
points", 10.0)])

fdtd.adddftmonitor(properties = props)

Running simulations
Set up resources

with lumapi.FDTD(hide=True) as fdtd:
Add CPU/GPU resources
cpuRes = fdtd.addresource("FDTD")
fdtd.setresource("FDTD", cpuRes, "device type",

"CPU")
fdtd.setresource("FDTD", cpuRes, "name", "PyLum

CPU")
gpuRes = fdtd.addresource("FDTD")
fdtd.setresource("FDTD", gpuRes, "device type",

"GPU")
fdtd.setresource("FDTD", gpuRes, "name", "PyLum

GPU")

Run simulation locally

with lumapi.FDTD() as fdtd:
... Create your project
fdtd.save("MyPyLumericalProject.fsp")
fdtd.run("FDTD", "GPU", "PyLum GPU") # Run GPU

solver on the PyLum GPU resource

Run FDTD solver on Ansys Cloud Burst Compute™

with lumapi.FDTD() as fdtd:
burstSettings={"account": "user@company.com",

"download": True, "Name": "MyPyLumBurstJob"}
fdtd.run("FDTD", "GPU", "burst", burstSettings)

Run a MODE simulation

with lumapi.MODE() as mode:
mode.addfde()
mode.setanalysis("wavelength", 1.55e-6)
mode.setanalysis("search", "near n")
mode.save("MyPyLumMODEProject.lms")
mode.findmodes()

Run a sweep

with lumapi.FDTD(hide=True) as fdtd:
fdtd.addsweep(0) # 0 - Sweep, 1 - Optimization,

2 - Monte Carlo, 3 - S-parmaeter Matrix, 4
- Corner

fdtd.setsweep("sweep","name","childSweep")
fdtd.setsweep("childSweep", "type", "Ranges")
fdtd.setsweep("childSweep", "number of points",

10)
Add parameters to existing object named film
sweepParams={"Name":"thickness", "Parameter":

"::model::film::z max", "Type": "Length",
"Start":0.05e-6, "Stop": 0.15e-6}

fdtd.addsweepparameter("childSweep",sweepParams)
insertsweep adds as a parent for sweeps, child

for other types
fdtd.insertsweep("childSweep")
fdtd.setsweep("sweep","name","parentSweep")
Add result to existing monitor named monitor
sweepResult1={"Name": "T", "Result":

"::model::monitor::T"}
fdtd.addsweepresult("parentSweep", sweepResult1)
fdtd.runsweep("parentSweep")

Visualize results
Visualize monitor data using matplotlib Python library

import numpy as np
import matplotlib.pyplot as plt
with lumapi.FDTD(hide=True) as fdtd:

Retrieve result from Lumerical dataset
eFieldRes = fdtd.getresult("monitor", "E")
x, y = eFieldRes['x'] , eFieldRes['y'] #

Convert to um
Ex, Ey, Ez = eFieldRes['E'][:,:,0,0,0],

eFieldRes['E'][:,:,0,0,1],
eFieldRes['E'][:,:,0,0,2]

fdtd.getelectric() also gets amplitude
eFieldAmplitude = Ex ** 2 + Ey ** 2 + Ez ** 2
X, Y = np.meshgrid(x, y) # Create meshgrid
plt.contourf(X, Y, eFieldAmplitude)

PyLumerical Documentation Getting Started API Reference User Guide Lumerical Scripting Language Lumerical Knowledge Base

https://lumerical.docs.pyansys.com/version/stable/user_guide/session_management.html
https://lumerical.docs.pyansys.com/version/stable/user_guide/working_with_simulation_objects.html
https://optics.ansys.com/hc/en-us/articles/39824576734867-Ansys-Cloud-Burst-Compute-for-Lumerical
https://lumerical.docs.pyansys.com/version/stable/user_guide/accessing_simulation_results.html
https://lumerical.docs.pyansys.com/
https://lumerical.docs.pyansys.com/version/stable/getting_started/index.html
https://lumerical.docs.pyansys.com/version/stable/api/index.html
https://lumerical.docs.pyansys.com/version/stable/user_guide/index.html
https://optics.ansys.com/hc/en-us/articles/360037228834
https://optics.ansys.com/hc/en-us/articles/42325093231251

	Install with virtual environment
	Starting a session
	Set up simulation objects
	Running simulations
	Visualize results

